
REV 1.0 – 27-10-2004

PROJECT ‘CLASSIFICATION OF RINGS, NUTS AND BOLTS’

INTRODUCTION

In this project, a classification system will be developed for classifying objects that belong to four
different categories: ring, nut-6 (6-sided), nut-4 (4-sided), and bolt. A vision system is available that
acquires images of these objects. Using some digital image processing techniques (not part of this
project) the images are segmented. After that, each imaged object is represented by a connected
component in the resulting binary (logical) image. Figure 1 shows already segmented images
containing rings, nuts-6, nuts-4 and bolts. These images are available for training and evaluation,
thus providing us with a labelled dataset of 121 objects per class.
 The classification will be based on so-called normalized Fourier descriptors. These are
measurements describing the shapes of the contours of the objects. The software provided with the
project can produce many descriptors per objects, but it remains a question whether all of them are
discriminating.
 The first goal of the design is to find a classifier that strives for minimal error rate. A low
computational load is also desirable, but not the main goal. After having decided which classifier
meets these requirements its performance should be specified in terms of an estimated error rate
(including an indication of the uncertainty of this estimate), and in terms of a confusion matrix.

Literature:
• Chapter 2
• Chapter 5
• Chapter 6
• Section 9.1

Requirements:
• Matlab 6.5 or higher
• PRTools Version CPESE
• Image processing toolbox
• Datafile: CPESE_PROJ_CLASS1.ZIP (includes images and ut_contourfft.m code)

a) b) c) d)

Figure 1. The images of the objects used for training and evaluation

a) rings b) 6-sided nuts c) 4-sided nuts d) bolts

2 CLASSIFICATION, PARAMETER ESTIMATION AND STATE ESTIMATION

THE DESIGN

Measurement vectors
The software that is provided within this project can calculate up to 64 descriptors denoted by kZ ,
where k ranges from 31− up to 32+ . The descriptors are normalized such that they are independent
from the orientation and the size. However, 0Z and 1Z should not be used, because 0Z does not
depend on the shape (but rather on the position) and 1Z is always one (because it is used for the
normalization). The given Matlab function, ut_contourfft, offers the possibility to calculate only a
selection of the available descriptors. For instance, Figure 2 shows the descriptors of four objects in
an (arbitrary) range from [10, 1]− − and [2, 10]+ + .

Creating the dataset
Each image in Figure 1 shows the segments of 121 objects. Thus, extraction of the boundary of each
segments, and subsequent determination of the normalized Fourier descriptors yields a training set of
4 121 484× = labelled vectors, each vector having 62 elements. An image can be transformed into a
set of measurement vectors with the following fragment of code:

fdlist = [-31:-1 2:32]; % exclude Z0 and Z1

imrings = imread('rings.tif'); % open and read the image file

figure; imshow(imrings); title('rings');

[BND,L,Nring,A] = bwboundaries(imrings,8,'noholes');% extract the boundaries

FDS = ut_contourfft(BND,'fdlist',fdlist,'nmag'); % calculate the FDs

Zrings = zeros(Nring,length(fdlist)); % allocate space

for n=1:Nring

 Zrings(n,:) = FDS{n}'; % collect the vectors

end

Likewise pieces of code are needed to get the measurement vectors from the other classes. The
filenames of the four images are: rings.tif, nuts6.tif, nuts4.tif and bolts.tif. The function
bwboundaries is from the image processing toolbox. The function ut_contourfft accompanies the
images.
 Section 5.1 describes how to transform the data into PRTools format. (Hint: use repmat to
create the array with labels. For instance, repmat('ring',[Nring 1]) creates an array of Nring entries
containing the string ‘ring’.)

Design strategy
In order to find a good classifier we follow roughly the outline presented in Section 9.1. First we
consider a few simple classifiers, such as ldc and qdc, that can be applied directly to the
measurement space. In order to assess the risk of overfitting, we calculate the error rate with and

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3
Fourier descriptors of a nut−6

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3
Fourier descriptors of a ring

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3
Fourier descriptors of a nut−4

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3
Fourier descriptors of a bolt

Figure 2 Normalized Fourier descriptors.

PROJECT: CLASSIFICATION OF RINGS, NUTS AND BOLTS 3

without cross-validation (testc and crossval, respectively).

After this first exercise, more complex classifiers can be tested:
• Parzen classification
• NNR and KNNR classification
• Support vector machines
• Feed-forward neural network
Note that some of these classifiers may need rescaling of the individual elements in order to have
comparable units, thus allowing the calculation of a fair distance measure.

These classifiers still use the full measurement space. Thus, the risk of overfitting is still present.
Possible countermeasures are:
• Application of regularization techniques to the linear and quadratic classifiers.
• Application of feature selection.
• Application of linear feature extraction, e.g. PCA and extraction based on inter/intra distances.
Feature selection and feature extraction only reduces the measurement space. The classification still
has to be done. Therefore, the selection and extraction techniques can be combined with the various
classifiers mentioned above.

Note that many of these classification methods rely on the selection of parameters and criterions. For
instance, the regularized ldc and qdc classifiers depend on one or more regularization parameters.
The feature selection depends on the strategy to traverse the search tree (branch&bound, forward
selection, plus L, take away R, etc) and on the criterion. In order to find the best method an
optimization of these design parameters should be accomplished. (See, for instance, Listing 9.7
where the structure of a neural network is optimized).

After having found the most promising classification methods, the corresponding performance must
be established. This is not only a specification of the error rate Ê as returned by crossval. Also its
accuracy, expressed as the standard deviation

Ê
σ , should be mentioned. See Section 5.4.

Ê
σ allows

us to judge whether the differences between the estimated error rates of the various classifiers are
statistically representative.
 The confusion matrix gives an impression which objects are likely to be confused. Therefore,
specification of the confusion matrix is also of interest.

